Struct nalgebra::geometry::Scale [−][src]
Expand description
A scale which supports non-uniform scaling.
Fields
vector: SVector<T, D>
The scale coordinates, i.e., how much is multiplied to a point’s coordinates when it is scaled.
Implementations
Inverts self
.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale3::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale2::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale2::identity());
// Returns None if any coordinate is 0.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t.try_inverse(), None);
Inverts self
.
Example
unsafe {
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.inverse_unchecked(), Scale3::identity());
assert_eq!(t.inverse_unchecked() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.inverse_unchecked(), Scale2::identity());
assert_eq!(t.inverse_unchecked() * t, Scale2::identity());
}
Inverts self
.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.pseudo_inverse(), Scale3::identity());
assert_eq!(t.pseudo_inverse() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::identity());
assert_eq!(t.pseudo_inverse() * t, Scale2::identity());
// Inverts only non-zero coordinates.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::new(0.0, 1.0));
assert_eq!(t.pseudo_inverse() * t, Scale2::new(0.0, 1.0));
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
T: Zero + One + Clone,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1>,
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
T: Zero + One + Clone,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1>,
Converts this Scale into its equivalent homogeneous transformation matrix.
Example
let t = Scale3::new(10.0, 20.0, 30.0);
let expected = Matrix4::new(10.0, 0.0, 0.0, 0.0,
0.0, 20.0, 0.0, 0.0,
0.0, 0.0, 30.0, 0.0,
0.0, 0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
let t = Scale2::new(10.0, 20.0);
let expected = Matrix3::new(10.0, 0.0, 0.0,
0.0, 20.0, 0.0,
0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
Inverts self
in-place.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let mut inv_t = Scale3::new(1.0, 2.0, 3.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale3::identity());
assert_eq!(inv_t * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
let mut inv_t = Scale2::new(1.0, 2.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale2::identity());
assert_eq!(inv_t * t, Scale2::identity());
// Does not perform any operation if a coordinate is 0.
let mut t = Scale2::new(0.0, 2.0);
assert!(!t.try_inverse_mut());
Translate the given point.
This is the same as the multiplication self * pt
.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(4.0, 10.0, 18.0));
Translate the given point by the inverse of this Scale.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0)).unwrap();
assert_eq!(transformed_point, Point3::new(4.0, 3.0, 2.0));
// Returns None if the inverse doesn't exist.
let t = Scale3::new(1.0, 0.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0));
assert_eq!(transformed_point, None);
Creates a new identity scale.
Example
let t = Scale2::identity();
let p = Point2::new(1.0, 2.0);
assert_eq!(t * p, p);
// Works in all dimensions.
let t = Scale3::identity();
let p = Point3::new(1.0, 2.0, 3.0);
assert_eq!(t * p, p);
Initializes this Scale from its components.
Example
let t = Scale6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);
Trait Implementations
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1> + Allocator<T, Const<D>>,
impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1> + Allocator<T, Const<D>>,
impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<T> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<T> for Scale<T, D> where
T: Scalar + ClosedMul,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Scale<T, D>> for Scale<T, D> where
T::Epsilon: Clone,
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Scale<T, D>> for Scale<T, D> where
T::Epsilon: Clone,
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Scale<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Scale<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
Auto Trait Implementations
impl<T, const D: usize> RefUnwindSafe for Scale<T, D> where
T: RefUnwindSafe,
impl<T, const D: usize> UnwindSafe for Scale<T, D> where
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.